Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

nuno:fiscomp_2015_1 [2015/06/03 12:53]
nuno
nuno:fiscomp_2015_1 [2015/07/21 17:17] (atual)
nuno
Linha 91: Linha 91:
-**Mapa Logístico e Caos** (entregar **até o fim do período letivo, 12/07/15**)+**Mapa Logístico e Caos** (entregar **até 19/07/15 (alunos da graduação) e 15/07/15 (alunos da PG)**)
  * Considere o mapa logístico x(t+1)=λx(t)[1-x(t)]. Começando com uma condição inicial x(0)=0,0001, mostre que para λ=1,01 o sistema se estabiliza no ponto fixo x*=0,00990 depois de cerca de 20min. Neste escala de tempo, lembre-se que cada iteração do mapa corresponde a 1s.   * Considere o mapa logístico x(t+1)=λx(t)[1-x(t)]. Começando com uma condição inicial x(0)=0,0001, mostre que para λ=1,01 o sistema se estabiliza no ponto fixo x*=0,00990 depois de cerca de 20min. Neste escala de tempo, lembre-se que cada iteração do mapa corresponde a 1s.
Linha 99: Linha 99:
  * Construa o gráfico de x' contra x para λ=3,1. Comece a escada a partir de x=0,2. Plote a escada, a parábola λx(1-x) e a reta x'=x no mesmo gráfico. Você consegue identificar o valor do atrator x*? Você deverá verificar que há mais de 1 atrator neste caso. Determine os valores destes atratores usando o método discutido em sala. Repita para λ=3,47 e λ=3,55.   * Construa o gráfico de x' contra x para λ=3,1. Comece a escada a partir de x=0,2. Plote a escada, a parábola λx(1-x) e a reta x'=x no mesmo gráfico. Você consegue identificar o valor do atrator x*? Você deverá verificar que há mais de 1 atrator neste caso. Determine os valores destes atratores usando o método discutido em sala. Repita para λ=3,47 e λ=3,55.
-  * Itere umas dez mil vezes o mapa logístico para λ=0,9. Comece em t=0 com um valor inicial arbitrário, x=0,1, e armazene num arquivo os dados x e t. Plote este gráfico e observe que você obterá o decaimento temporal de x(t). Que função é esta que descreve o decaimento no tempo? quais os valores dos parâmetros que definem essa função?+  * Itere umas dez mil vezes o mapa logístico para λ=0,9. Comece em t=0 com um valor inicial arbitrário, x=0,1, e armazene num arquivo os dados x e t. Plote este gráfico e observe que você obterá o decaimento temporal de x(t). Que função é esta que descreve o decaimento no tempo?
-  * Itere umas dez mil vezes o mapa logístico na situação crítica, λ=1. Comece em t=0 com um valor inicial arbitrário, x=0,1, e armazene num arquivo os dados x e t. Plote este gráfico e observe que você obterá o decaimento temporal de x(t). Que função é esta que descreve o decaimento no tempo? quais os valores dos parâmetros que definem essa função?+  * Itere umas dez mil vezes o mapa logístico na situação crítica, λ=1. Comece em t=0 com um valor inicial arbitrário, x=0,1, e armazene num arquivo os dados x e t. Plote este gráfico e observe que você obterá o decaimento temporal de x(t). Que função é esta que descreve o decaimento no tempo?
  * Construa o mapa de bifurcações para 0.0 < λ < 4.0   * Construa o mapa de bifurcações para 0.0 < λ < 4.0
Linha 107: Linha 107:
-**Difusão de Calor e Caminhadas Aleatórias** (entregar **até o fim do período letivo, 12/07/15**)+**Difusão de Calor e Caminhadas Aleatórias** (entregar **até 19/07/15 (alunos da graduação) e 15/07/15 (alunos da PG)**)
  * Uma barra metálica com temperatura inicialmente uniforme é submetida a um choque térmico localizado no seu centro. Escolha a barra entre x=0 e x=+L, ou entre x=-L/2 e x=+L/2, a seu critério. Considere a condição inicial u(x,0) nula em todos os pontos da barra, exceto no centro, onde temos u=1. Considere Δx=Δt=1, em unidades arbitrárias nas quais o coeficiente de difusão vale D=0,2. Determine numericamente através do método de Euler a distribuição de temperaturas ao longo da barra, ou seja, a função u_x,t para t=1,2,4,8,16,32,64,128,256,512 e 1024.   * Uma barra metálica com temperatura inicialmente uniforme é submetida a um choque térmico localizado no seu centro. Escolha a barra entre x=0 e x=+L, ou entre x=-L/2 e x=+L/2, a seu critério. Considere a condição inicial u(x,0) nula em todos os pontos da barra, exceto no centro, onde temos u=1. Considere Δx=Δt=1, em unidades arbitrárias nas quais o coeficiente de difusão vale D=0,2. Determine numericamente através do método de Euler a distribuição de temperaturas ao longo da barra, ou seja, a função u_x,t para t=1,2,4,8,16,32,64,128,256,512 e 1024.
-  * Com os dados do problema anterior, calcule a dispersão Δ(t) nos mesmos instantes anteriores e mostre que Δ(t) ~ t^{1/2}. Quanto vale a constante de proporcionalidade da relação anterior? Dê o resultado numérico e verifique também o valor dessa constante para D=0,1 e 0,3. Você deverá estimar a relação entre essa constante de proporcionalidade e o coeficiente de difusão D baseado nestes 3 valores.+  * Com os dados do problema anterior, calcule a dispersão Δ(t) nos mesmos instantes anteriores e mostre que Δ(t) ~ t^{1/2}. Quanto vale a constante de proporcionalidade da relação anterior? Dê o resultado numérico e verifique que essa constante vale √(2D). Verifique também essa relação dessa constante de proporcionalidade para D=0,1 e 0,3.
-  * Faça a simulação do problema do caminhante aleatório em 1 dimensão utilizando p=q=1/2. Cada caminhante deve dar 100.000 passos, e faça médias sobre 10.000 caminhantes independentes. Plote num gráfico os os valores médios <x> e <x^2> em função do tempo, e em outro gráfico a dispersão Δ(t) = <x^2> - <x>^2. Como estes valores crescem com o tempo? +  * Faça a simulação do problema do caminhante aleatório em 1 dimensão utilizando p=q=1/2. Cada caminhante deve dar 100.000 passos, e faça médias sobre 10.000 caminhantes independentes. Plote num gráfico os os valores médios <x> e <x^2> em função do tempo, e em outro gráfico a dispersão Δ(t) = √(<x^2> - <x>^2). Como estes valores crescem com o tempo?
  * Estime também a distribuição final de posições dos 10.000 caminhantes, após os 100.000 passos. Coloque na escala log-linear, e você deverá observar uma parábola. Que distribuição é essa? ela mudará seu formato se você utilizar valores diferentes de p?   * Estime também a distribuição final de posições dos 10.000 caminhantes, após os 100.000 passos. Coloque na escala log-linear, e você deverá observar uma parábola. Que distribuição é essa? ela mudará seu formato se você utilizar valores diferentes de p?
Linha 119: Linha 119:
-**Geradores de Números Aleatórios** (entregar **até o fim do período letivo, 12/07/15**) +**Geradores de Números Aleatórios** (entregar **até 19/07/15 (alunos da graduação) e 15/07/15 (alunos da PG)**)
- +
-  * Vamos considerar o gerador linear congruencial r = (a*r) mod m. Considere as escolhas: (i) a=85, m=256; (ii) a=899, m=32768; (iii) a=16807, m=4294967295. Calcule o período destes geradores, considerando como semente r=27. +
- +
-  * Construa histogramas dos números aleatórios gerados pelos geradores (ii) e (iii) do item anterior, para diferentes valores do total de números aleatórios gerados (10^{2}, 10^{3}, 10^{4}, 10^{5}, 10^{6} e 10^{7}). +
- +
-  * Dada um probabilidade p (faça separadamente para p=0.3, 0.5 e 0.9), gere N números aleatórios usando o gerador (iii) acima, normalizando estes números para ficarem no intervalo [0,1]. Conte o número n deles que se situam entre 0 e p. A fração n/N deve reproduzir o valor de p fornecido. Considerar N=10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7} e 10^{8}. Para verificar o resultado, plote a fração n/N contra N, e juntamente plote uma reta horizontal com o valor de p. +
- +
-  * Gerar N pares (x,y) de números aleatórios com o gerador (iii), todos os números no intervalo [0,1]. Todos estes pontos estarão localizados no interior de um quadrado de lado unitário. Os pontos que satisfazem à condição x^{2} + y^{2} < 1 também estarão localizados no interior de 1/4 de uma circunferência de raio unitário. Conte este número n de pontos dentro do círculo e obtenha a estimativa para π através de π=4n/N, conforme discutido em sala. Faça para diferentes valores de N, tais como N=10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7} e 10^{8}, e plote o valor obtido π=4n/N contra N juntamente com uma reta horizontal com o valor π=3,141592. +
- +
- +
 +  * Vamos considerar o gerador linear congruencial r = (a*r) mod m. Considere as escolhas: (i) a=85, m=256; (ii) a=899, m=32768; (iii) a=16807, m=4294967295. Calcule o período destes geradores, considerando como semente r=27.
 +  * Dada um probabilidade p (faça separadamente para p=0.3, 0.5 e 0.9), gere N números aleatórios usando o gerador (iii) acima, normalizando estes números para ficarem no intervalo [0,1]. Conte o número n deles que se situam entre 0 e p. A fração n/N deve reproduzir o valor de p fornecido. Considerar N=10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7} e 10^{8}. Para verificar o resultado, plote a fração n/N contra N, e juntamente plote uma reta horizontal com o valor de p. Utilize a escala log para o eixo x, ficará mais fácil de visualizar.
 +  * Gerar N pares (x,y) de números aleatórios com o gerador (iii), todos os números no intervalo [0,1]. Todos estes pontos estarão localizados no interior de um quadrado de lado unitário. Os pontos que satisfazem à condição x^{2} + y^{2} < 1 também estarão localizados no interior de 1/4 de uma circunferência de raio unitário. Conte este número n de pontos dentro do círculo e obtenha a estimativa para π através de π=4n/N, conforme discutido em sala. Faça para diferentes valores de N, tais como N=10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}, 10^{8} e 10^{9}, e plote o valor obtido π=4n/N contra N juntamente com uma reta horizontal com o valor π=3,141592. Utilize a escala log para o eixo x, ficará mais fácil de visualizar, e plote o eixo y no intervalo 3.12 < y < 3.18.
 +**Método de Monte Carlo e o modelo de Ising** (entregar **até 19/07/15 (alunos da graduação) e 15/07/15 (alunos da PG)**)
 +  * Simule o modelo de Ising na rede quadrada L x L, com condições de contorno periódicas, considerando L=128. Inicie com uma configuração aleatória de spins, com 50% de spins +1 e 50% de spins -1. Plote curvas da magnetização por spin em função do tempo. Você deve ver a magnetização flutuar e variar no tempo, até atingir o equilíbrio. Considere diferentes temperaturas, algumas abaixo de Tc=2.27 (por exemplo T=1.0, 1.5, 1.8, 2.0 e 2.2) e outras acima de Tc (por exemplo 2.5, 2.7, 3.0 e 3.5). Não é necessário fazer médias sobre simulações diferentes.
 +  * Simule o modelo de Ising na rede quadrada L x L, com condições de contorno periódicas, considerando L=16, 24, 32, 64 e 128. Plote as curvas das quantidades de interesse no equilíbrio (magnetização por spin média, energia média, susceptibilidade e calor específico) em função da temperatura para os 5 tamanhos de rede. Lembre de descartar alguns passos de Monte Carlo para garantir que o sistema esteja no equilíbrio. Faça médias temporais sobre uma quantidade razoável de passos de Monte Carlo. Não é necessário fazer médias sobre simulações diferentes. Verifique e discuta os efeitos de tamanho finito que falamos em sala, assim como o comportamento esperado para as quantidades de interesse.
 +===== Notas =====
 +  * {{:nuno:notas_fiscomp_2015_1_graduacao_novo.pdf|Alunos de Graduação}}
 +  * {{:nuno:notas_fiscomp_2015_1_pg.pdf|Alunos de Pós-Graduação}}
nuno/fiscomp_2015_1.1433346793.txt.gz · Última modificação: 2015/06/03 12:53 por nuno
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0