Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

nuno:fiscomp_2017_1 [2017/05/03 11:01]
nuno
nuno:fiscomp_2017_1 [2017/07/20 14:23] (atual)
nuno
Linha 76: Linha 76:
-**Pêndulo** (entregar **até 19/05/17**)+**Pêndulo** (entregar **até 22/05/17**)
  * Resolva numericamente a equação do pêndulo simples através do mapa iterativo gerado pelo uso do método de Euler, com os dados L=2,00 m e v_o=1,00 m/s, e plote θ em função do tempo t. Escolha um intervalo Δt adequado à precisão compatível com a dos dados apresentados. Além de θ_o=0, você necessitará conhecer a priori o valor de θ_1, a partir da condição inicial dθ/dt=v_o/L. Basta notar que a derivada de θ(t) no instante t=0 pode ser escrita como dθ(t=0)/dt = θ_1/Δt.   * Resolva numericamente a equação do pêndulo simples através do mapa iterativo gerado pelo uso do método de Euler, com os dados L=2,00 m e v_o=1,00 m/s, e plote θ em função do tempo t. Escolha um intervalo Δt adequado à precisão compatível com a dos dados apresentados. Além de θ_o=0, você necessitará conhecer a priori o valor de θ_1, a partir da condição inicial dθ/dt=v_o/L. Basta notar que a derivada de θ(t) no instante t=0 pode ser escrita como dθ(t=0)/dt = θ_1/Δt.
  * Mostre que o período do pêndulo vale T = 2π√(L/g) dentro da aproximação de pequenas oscilações, e verifique este resultado no caso do gráfico do problema anterior. Você pode fazer isso plotando os dados do item anterior e uma reta vertical com o resultado analítico T = 2π√(L/g).   * Mostre que o período do pêndulo vale T = 2π√(L/g) dentro da aproximação de pequenas oscilações, e verifique este resultado no caso do gráfico do problema anterior. Você pode fazer isso plotando os dados do item anterior e uma reta vertical com o resultado analítico T = 2π√(L/g).
-  * Compare os resultados obtidos no 2o item com a aproximação de pequenas oscilações, ou seja, plote os resultados analítico e numérico juntos no mesmo gráfico.+  * Compare os resultados obtidos no 1o item com a aproximação de pequenas oscilações, ou seja, plote os resultados analítico e numérico juntos no mesmo gráfico.
  * Repita o problema do item 1, desta vez usando uma velocidade inicial 5 vezes menor, v_o=0,200 m/s. Compare o período T e a amplitude θ_A obtidos com os valores previstos pela aproximação de pequenas oscilações. O acordo é bom? por quê?   * Repita o problema do item 1, desta vez usando uma velocidade inicial 5 vezes menor, v_o=0,200 m/s. Compare o período T e a amplitude θ_A obtidos com os valores previstos pela aproximação de pequenas oscilações. O acordo é bom? por quê?
  * Repita novamente, desta vez usando uma velocidade inicial 5 vezes maior, v_o=5,00 m/s. Compare o período T e a amplitude θ_A obtidos com os valores previstos pela aproximação de pequenas oscilações. O acordo é bom? por quê?   * Repita novamente, desta vez usando uma velocidade inicial 5 vezes maior, v_o=5,00 m/s. Compare o período T e a amplitude θ_A obtidos com os valores previstos pela aproximação de pequenas oscilações. O acordo é bom? por quê?
Linha 89: Linha 89:
-**Mapa Logístico e Caos** (entregar **até ??/06/15**)+**Mapa Logístico e Caos** (entregar **até 23/06/17**)
  * Considere o mapa logístico x(t+1)=λx(t)[1-x(t)]. Começando com uma condição inicial x(0)=0,0001, mostre que para λ=1,01 o sistema se estabiliza no ponto fixo x*=0,00990 depois de cerca de 20min. Neste escala de tempo, lembre-se que cada iteração do mapa corresponde a 1s.   * Considere o mapa logístico x(t+1)=λx(t)[1-x(t)]. Começando com uma condição inicial x(0)=0,0001, mostre que para λ=1,01 o sistema se estabiliza no ponto fixo x*=0,00990 depois de cerca de 20min. Neste escala de tempo, lembre-se que cada iteração do mapa corresponde a 1s.
Linha 105: Linha 105:
 +
 +
 +**Difusão de Calor e Caminhadas Aleatórias** (entregar **até 18/07/17**)
 +
 +  * Uma barra metálica com temperatura inicialmente uniforme é submetida a um choque térmico localizado no seu centro. Escolha a barra entre x=0 e x=+L, ou entre x=-L/2 e x=+L/2, a seu critério. Considere a condição inicial u(x,0) nula em todos os pontos da barra, exceto no centro, onde temos u=1. Considere Δx=Δt=1, em unidades arbitrárias nas quais o coeficiente de difusão vale D=0,2. Determine numericamente através do método de Euler a distribuição de temperaturas ao longo da barra, ou seja, a função u_x,t para t=1,2,4,8,16,32,64,128,256,512 e 1024.
 +
 +  * Com os dados do problema anterior, calcule a dispersão Δ(t) nos mesmos instantes anteriores e mostre que Δ(t) ~ t^{1/2}. Quanto vale a constante de proporcionalidade da relação anterior? Dê o resultado numérico e verifique que essa constante vale √(2D). Verifique também essa relação dessa constante de proporcionalidade para D=0,1 e 0,3.
 +
 +  * Faça a simulação do problema do caminhante aleatório em 1 dimensão utilizando p=q=1/2. Cada caminhante deve dar 100.000 passos, e faça médias sobre 10.000 caminhantes independentes. Plote num gráfico os os valores médios <x> e <x^2> em função do tempo, e em outro gráfico a dispersão Δ(t) = √(<x^2> - <x>^2). Como estes valores crescem com o tempo?
 +
 +  * Estime também a distribuição final de posições dos 10.000 caminhantes, após os 100.000 passos. Coloque na escala log-linear, e você deverá observar uma parábola. Que distribuição é essa? ela mudará seu formato se você utilizar valores diferentes de p?
 +
 +
 +
 +**Geradores de Números Aleatórios** (entregar **até 18/07/17**)
 +
 +  * Vamos considerar o gerador linear congruencial r = (a*r) mod m. Considere as escolhas: (i) a=85, m=256; (ii) a=899, m=32768; (iii) a=16807, m=4294967295; (iv) a=16807, m=2147483647. Calcule o período destes geradores, considerando como semente r=27. Observe que você deve gerar uma quantidade de números aleatórios suficiente para cada caso, dado que o período destes geradores vai variar bastante.
 +
 +  * Dada um probabilidade p (faça separadamente para p=0.3, 0.5 e 0.9), gere N números aleatórios usando o gerador (iv) acima, normalizando estes números para ficarem no intervalo [0,1]. Conte o número n deles que se situam entre 0 e p. A fração n/N deve reproduzir o valor de p fornecido. Considerar N=10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7} e 10^{8}. Para verificar o resultado, plote a fração n/N contra N, e juntamente plote uma reta horizontal com o valor de p. Utilize a escala log para o eixo x, ficará mais fácil de visualizar.
 +
 +  * Gerar N pares (x,y) de números aleatórios com o gerador (iv), todos os números no intervalo [0,1]. Todos estes pontos estarão localizados no interior de um quadrado de lado unitário. Os pontos que satisfazem à condição x^{2} + y^{2} < 1 também estarão localizados no interior de 1/4 de uma circunferência de raio unitário. Conte este número n de pontos dentro do círculo e obtenha a estimativa para π através de π=4n/N, conforme discutido em sala. Faça para diferentes valores de N, tais como N=10^{3}, 10^{4}, 10^{5}, 10^{6}, 10^{7}, 10^{8} e 10^{9}, e plote o valor obtido π=4n/N contra N juntamente com uma reta horizontal com o valor π=3,141592. Utilize a escala log para o eixo x, ficará mais fácil de visualizar, e plote o eixo y no intervalo 3.10 < y < 3.18.
 +
 +
 +
 +**Método de Monte Carlo e o modelo de Ising** (entregar **até 18/07/17**)
 +
 +  * Simule o modelo de Ising na rede quadrada L x L, com condições de contorno periódicas, considerando L=128. Inicie com uma configuração aleatória de spins, com 50% de spins +1 e 50% de spins -1. Plote curvas da magnetização por spin em função do tempo. Você deve ver a magnetização flutuar e variar no tempo, até atingir o equilíbrio. Considere diferentes temperaturas, algumas abaixo de Tc=2.27 (por exemplo T=1.0, 1.5, 1.8, 2.0 e 2.2) e outras acima de Tc (por exemplo 2.5, 2.7, 3.0 e 3.5). Não é necessário fazer médias sobre simulações diferentes.
 +
 +  * Simule o modelo de Ising na rede quadrada L x L, com condições de contorno periódicas, considerando L=16, 24, 32, 64 e 128. Plote as curvas das quantidades de interesse no equilíbrio (magnetização por spin média, energia média, susceptibilidade e calor específico) em função da temperatura para os 5 tamanhos de rede. Lembre de descartar alguns passos de Monte Carlo para garantir que o sistema esteja no equilíbrio. Faça médias temporais sobre uma quantidade razoável de passos de Monte Carlo. Não é necessário fazer médias sobre simulações diferentes. Verifique e discuta os efeitos de tamanho finito que falamos em sala, assim como o comportamento esperado para as quantidades de interesse.
Linha 114: Linha 143:
===== Notas ===== ===== Notas =====
-  +  * {{:nuno:notas_fiscomp_2017_1.xls|Notas}} 
 + 
 + 
nuno/fiscomp_2017_1.1493820075.txt.gz · Última modificação: 2017/05/03 11:01 por nuno
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0